Optimization of the nanotwin-induced zigzag surface of copper by electromigration.
نویسندگان
چکیده
By adding nanotwins to Cu, the surface electromigration (EM) slows down. The atomic mobility of the surface step-edges is retarded by the triple points where a twin meets a free surface to form a zigzag-type surface. We observed that EM can alter the zigzag surface structure to optimize the reduction of EM, according to Le Chatelier's principle. Statistically, the optimal alternation is to change an arbitrary (111)/(hkl) zigzag pair to a pair having a very low index (hkl) plane, especially the (200) plane. Using in situ ultrahigh vacuum and high-resolution transmission electron microscopy, we examined the effects of different zigzag surfaces on the rate of EM. The calculated rate of surface EM can be decreased by a factor of ten.
منابع مشابه
Hydrothermal synthesis of surface-modified copper oxide-doped zinc oxide nanoparticles for degradation of acid black 1: Modeling and optimization by response surface methodology
Dyes are widely used in various industries most of them are not readily biodegradable and are consisted of number of toxic, mutagenic, and carcinogenic compounds. Therefore, it is essential to remove them from effluent before their discharge to the environment. The objective of this investigation was to synthesize copper oxide (CuO) doped zinc oxide (ZnO) nanoparticles under mild hydrothermal c...
متن کاملGrowth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance.
Densely nanotwinned Cu nanowire (NW) arrays with an identical diameter of ∼55 nm were fabricated by pulse electrochemical deposition at low temperature using anodic aluminum oxide as a template. Different growth orientations of nanotwinned Cu nanowire arrays were investigated. The endurance of the electrical current density before breakdown of the nanotwinned Cu NWs can reach up to 2.4 × 10(8) ...
متن کاملCopper recovery from thickener overflow by electrocoagulation/flotation: optimization of response surface, modeling, and sludge study
The electrocoagulation/flotation process is a novel approach in mining industry that is implemented to return Cu metal to the production cycle, which improves copper recovery and reduces waste water. In this research work, the response surface methodology was applied to optimize the factors effective in Cu metal recovery and sludge volume produced from thickener overflow. To this end, the D-opt...
متن کامل3-D Physically-Based Electromigration Simulation in Copper - Low-K Interconnect
We have developed a novel physical model and a simulation algorithm capable of predicting electromigration (EM) induced void nucleation and growth in an arbitrary interconnect segment. Incorporation of all imp ortant atom migration causes into the mass balance equation and its coupled solution with the corresponding electromagnetics, heat transfer and elasticity problems has provided a capabili...
متن کاملP 17 Microstructure and Stress Aspects of Electromigration Modeling
The electromigration behaviour of copper interconnects realized in damascene architecture indicates macroscopic and microscopic electromigration divergence sites. Macroscopic divergence sites exist at the cathode end of via bottoms where the barrier layer can be a blocking boundary for the electromigration flux. As microscopic divergence can be considered triple point sites of the grain boundar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2016